nygazet.com logo

Patchy nanoparticles by atomic stencilling

Patchy nanoparticles by atomic stencilling
science10/15/2025

Stencilling, in which patterns are created by painting over masks, has ubiquitous applications in art, architecture and manufacturing. Modern, top-down microfabrication methods have succeeded in reducing mask sizes to under 10 nm (refs. 1,2), enabling ever smaller microdevices as today’s fastest computer chips. Meanwhile, bottom-up masking using chemical bonds or physical interactions has remained largely unexplored, despite its advantages of low cost, solution-processability, scalability and high compatibility with complex, curved and three-dimensional (3D) surfaces3,4. Here we report atomic stencilling to make patchy nanoparticles (NPs), using surface-adsorbed iodide submonolayers to create the mask and ligand-mediated grafted polymers onto unmasked regions as ‘paint’. We use this approach to synthesize more than 20 different types of NP coated with polymer patches in high yield. Polymer scaling theory and molecular dynamics (MD) simulation show that stencilling, along with the interplay of enthalpic and entropic effects of polymers, generates patchy particle morphologies not reported previously. These polymer-patched NPs self-assemble into extended crystals owing to highly uniform patches, including different non-closely packed superlattices. We propose that atomic stencilling opens new avenues in patterning NPs and other substrates at the nanometre length scale, leading to precise control of their chemistry, reactivity and interactions for a wide range of applications, such as targeted delivery, catalysis, microelectronics, integrated metamaterials and tissue engineering5–11. An atomic stencilling method based on the co-adsorption of iodide and 2-naphthalenethiol on gold is described, yielding more than 20 different types of nanoparticle with masked and painted regions and patchy particle morphologies not reported previously.

Atomic-scale DFT calculations (Methods, Supplementary Tables 11–13 and Supplementary Note 4) show that iodide adsorption onto gold NP surfaces leads to facet-selective binding of 2-NAT ligands, controlled by iodide and ligand concentrations. Experime... [27652 chars]