nygazet.com logo

Mechanical confinement governs phenotypic plasticity in melanoma

Mechanical confinement governs phenotypic plasticity in melanoma
science8/27/2025

Phenotype switching is a form of cellular plasticity in which cancer cells reversibly move between two opposite extremes: proliferative versus invasive states1,2. Although it has long been hypothesized that such switching is triggered by external cues, the identity of these cues remains unclear. Here we demonstrate that mechanical confinement mediates phenotype switching through chromatin remodelling. Using a zebrafish model of melanoma coupled with human samples, we profiled tumour cells at the interface between the tumour and surrounding microenvironment. Morphological analysis of interface cells showed elliptical nuclei, suggestive of mechanical confinement by the adjacent tissue. Spatial and single-cell transcriptomics demonstrated that interface cells adopted a gene program of neuronal invasion, including the acquisition of an acetylated tubulin cage that protects the nucleus during migration. We identified the DNA-bending protein HMGB2 as a confinement-induced mediator of the neuronal state. HMGB2 is upregulated in confined cells, and quantitative modelling revealed that confinement prolongs the contact time between HMGB2 and chromatin, leading to changes in chromatin configuration that favour the neuronal phenotype. Genetic disruption of HMGB2 showed that it regulates the trade-off between proliferative and invasive states, in which confined HMGB2high tumour cells are less proliferative but more drug-resistant. Our results implicate the mechanical microenvironment as a mechanism that drives phenotype switching in melanoma. Mechanical confinement of cancer cells at the tumour–microenvironment interface induces phenotype switching through chromatin remodelling by HMGB2, leading to a more invasive and drug-resistant state in melanoma.

Zebrafish husbandry Stable transgenic zebrafish lines were kept at 28.5 °C in a dedicated aquatics facility with a 14 h on/10 h off light cycle. Casper fish with the following genotype were used for all experiments: mitfa-BRAFV600E;p53−/−;mitfa−/−. F... [33842 chars]