nygazet.com logo
Myocardial reprogramming by HMGN1 underlies heart defects in trisomy 21
health

Myocardial reprogramming by HMGN1 underlies heart defects in trisomy 21

2 min read

Congenital heart defects (CHDs) are the most common developmental abnormalities, affecting around 1% of live births1. Aneuploidy causes around 15% of CHDs, with trisomy 21 (also known as Down syndrome) being the most frequent form2. CHDs occur in around 50% of cases of Down syndrome, with an approximately 1,000-fold enrichment of atrioventricular canal (AVC) defects that disrupt the junction between the atria and ventricles3,4. The AVC contains unique myocardial cells that are essential for valvuloseptal development; however, the specific combination of dosage-sensitive genes on chromosome 21 that are responsible for Down syndrome-associated CHDs have remained unknown. Here, using human pluripotent stem cell and mouse models of Down syndrome, we identify HMGN1, a nucleosome-binding epigenetic regulator encoded on chromosome 21, as a key contributor to these defects. Single-cell transcriptomics showed that trisomy 21 shifts human AVC cardiomyocytes towards a ventricular cardiomyocyte state. A CRISPR-activation single-cell RNA droplet sequencing (CROP-seq) screen of chromosome 21 genes expressed during heart development revealed that HMGN1 upregulation mimics this shift, whereas deletion of one HMGN1 allele in trisomic cells restored normal gene expression. In a mouse model of trisomy 21, a similar transcriptional shift of AVC cardiomyocytes was restored by a reduction in Hmgn1 dosage, leading to rescue of valvuloseptal defects. These findings identify HMGN1 as a dosage-sensitive modulator of AVC development and cardiac septation in Down syndrome. This study offers a paradigm for dissecting aneuploidy-associated pathogenesis using isogenic systems to map causal genes in complex genetic syndromes. Studies using human pluripotent stem cells and a mouse model of Down syndrome identify HMGN1 as a key contributor to congenital heart defects in individuals with Down syndrome.

Animal models All animals used in this study were handled in accordance with protocols approved by the Institutional Animal Care and Use Committees (IACUC) at the University of California San Francisco. All protocols were conducted in accordance with... [36471 chars]

Read Original Article

Source: Nature

Visit Source

Share this article